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Abstract

Recent improvements in an unstructured-grid method for large-scale aerodynamic design are presented. Pre-
vious work had shown such computations to be prohibitively long in a sequential processing environment. Also,
robust adjoint solutions and mesh movement procedures were difficult to realize, particularly for viscous flows.
To overcome these limiting factors, a set of design codes based on a discrete adjoint method is extended to a mul-
tiprocessor environment using a shared memory approach. A nearly linear speedup is demonstrated, and the
consistency of the linearizations is shown to remain valid. The full linearization of the residual is used to precon-
dition the adjoint system, and a significantly improved convergence rate is obtained. A new mesh movement algo-
rithm is implemented and several advantages over an existing technique are presented. Several design cases are
shown for turbulent flows in two and three dimensions.
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Introduction
With the advent of modern computer architectures, aerody-

namic designers have sought to make use of high-fidelity compu-
tational fluid dynamics (CFD) codes in their everyday design ef-
forts. While considerable progress has been made towards this
goal, realistic use of such tools remains hindered by the extreme
computational burden associated with such an endeavor.

A large focus has recently been placed on design algorithms.
In the area of gradient-based optimization, research has focused
on several methods for obtaining sensitivity information, and
many of these approaches rely on an adjoint-variable formulation
for efficiently computing sensitivity derivatives. The adjoint
technique is particularly attractive for aerodynamic design prob-
lems in which there are a large number of design variables, yet
relatively few constraints. Examples of both continuous and dis-
crete approaches to this method can be found in Refs. 1-10.

In Refs. 1-4, a discrete adjoint technique has been imple-
mented on unstructured grids for two- and three-dimensional
flows. This work was primarily aimed at performing accurate lin-
earizations of Reynolds-averaged Navier-Stokes solvers, using
both compressible and incompressible formulations. Results in-
dicated highly accurate sensitivity information for fully turbulent
flows. However, the cost of such computations in a sequential-
processing environment prevented large-scale design cases from
being pursued. The preconditioning strategy used for the adjoint
system in these references was based on a first-order lineariza-
tion of the residual and often led to poor convergence rates. In
addition, experience showed that the combination of a distance
function approach and tension-spring analogy used for mesh
movement was insufficient when large changes in the geometry
were necessary. This procedure was also intolerant of initial
meshes with poor quality.

In the current work, the linearizations developed in Refs. 1-4
are modified to run in a parallel processing environment. The do-
main decomposition and parallelization strategies are discussed,

resulting speedups are demonstrated, and the linearizations are
shown to remain consistent. A new preconditioning strategy for the
adjoint solver is implemented and significantly improved conver-
gence is demonstrated for turbulent flow. A new mesh movement
strategy based on modified linear elasticity theory is also adopted,
and several advantages over the previous approach are presented.
Several design cases are also shown.

Nomenclature
Lift and drag coefficients
Chord
Vector of design variables
Cost function
Identity matrix
Lagrangian function
Vector of dependent variables
Discretized residual vector
Time
Nodal displacements
Vector of nodal displacements
Volume of control volume
Computational mesh
Vector of costate variables
Poisson’s ratio

Design Methodology

Flow Equations
The governing flow equations are the Reynolds-averaged

Navier-Stokes equations,11 coupled with the one-equation turbu-
lence model of Spalart and Allmaras.12 The flow solvers used in the
current work are described at length in Refs. 4, 13, and 14. The
codes use an implicit, upwind, finite-volume discretization, in
which the dependent variables are stored at the mesh vertices. In-
viscid fluxes at cell interfaces are computed using the upwind
schemes of Roe15, van Leer16, or Osher17. Viscous fluxes are
formed using an approach equivalent to a central-difference Galer-
kin procedure. Temporal discretization is performed using a back-
ward-Euler time-stepping scheme. The meshes used in this study
have been generated using the software described in Refs. 18 and
19.

An approximate solution of the linear system of equations
formed at each time step is obtained using several iterations of a
point-iterative scheme in which the nodes are updated in an even-
odd fashion, resulting in a Gauss-Seidel-type method.
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The turbulence model is solved separately from the flow equa-
tions at each time step, using a backward-Euler time-stepping
scheme. The resulting linear system is solved using the same point-
iterative scheme employed for the flow equations. The turbulence
model is integrated all the way to the wall without the use of wall
functions.

Adjoint and Design Equations
Given a steady-state flow solution in the form of

, a Lagrangian function can be defined as

(1)

where  represents a cost function to be minimized and
 represents a vector of Lagrange multipliers, or costate variables.

Differentiating this expression yields the following:

(2)

Since the vector of costate variables is essentially arbitrary, the co-
efficient multiplying  can be eliminated using the fol-
lowing equation:

(3)

Eq. 3 represents the discrete adjoint equation for the design prob-
lem. Once the solution for  has been formed, the remaining terms
in Eq. 2 can be evaluated to give the desired sensitivity information:

(4)

The adjoint equation given in Eq. 3 represents a linear set of
equations for the costate variables . Although this system can be
solved directly using GMRES,20 a time-like derivative is added and
the solution is obtained by marching in time, much like the flow
solver:

(5)

where

(6)

The time term can be used to increase the diagonal dominance for
cases in which GMRES alone would tend to stall. This ultimately
results in a more robust adjoint solver.

In Refs. 1-5, an incomplete LU decomposition of the matrix ob-
tained from a first-order accurate discretization is used to precondi-
tion the linear system. The preconditioning is applied on the left
and no fill-in is allowed (ILU[0]).21

Domain Decomposition Methodology
In the current work, the mesh partitioner MeTiS22 is used to di-

vide the original mesh into subdomains suitable for a parallel envi-
ronment. Given the connectivities associated with each node in the
mesh and the number of partitions desired, MeTiS returns an array
that designates a partition number for each node in the mesh. The
user is then responsible for extracting the data structures required
by the specific application.

Due to the gradient terms used in the reconstruction procedure,
achieving second-order accuracy in the flow solver requires infor-
mation from the neighbors of each mesh point as well as the points
adjacent to these neighbors. In the present implementation, the gra-
dients of the dependent variables are first computed on each mesh
partition and then the results are scattered onto neighboring parti-
tions. This approach dictates that a single level of “ghost” nodes be
stored on each processor. These ghost nodes that are connected to
mesh points on the current partition are referred to as “level-1”
nodes. Similarly, the neighbors of level-1 nodes that do not lie on
the current partition are designated “level-2” nodes. This terminol-
ogy is illustrated graphically in Fig. 1.

The adjoint solver requires similar information; however, unlike
the flow solver, residual contributions must be written into off-pro-
cessor memory locations associated with level-2 mesh points. This
implies that a second level of ghost information must be retained
along partition boundaries.

Software has been developed to extract the required information
from a pre-existing mesh based on the partitioning array provided
by MeTiS. This domain decomposition operation is done prior to
performing any computations. The user is also able to read in exist-
ing subdomains and their corresponding solution files and reparti-
tion as necessary. This capability is useful in the event that addi-
tional processors become available or processors currently being
employed must be surrendered to other users. In addition, software
has been developed that reassembles partition information into glo-
bal files and aids in post-processing the solutions.

Parallelization Strategy
Each of the codes has been modified to run in a multiprocessor

environment using a shared memory implementation. This ap-
proach has been chosen because the primary hardware to be utilized
is a Silicon Graphics Origin 2000 system. In the current implemen-
tation, ghost information is exchanged across partition boundaries
by loading data into global shared arrays which are accessible from
each processor. Simple compiler directives specific to the Origin
2000 system are used to spawn child processes for each partition in
the mesh. This approach scales well and is readily extendable to a
message-passing or OpenMP23 implementation. The convergence
rate of the flow solution is independent of the number of proces-
sors, whereas the convergence of the adjoint solver varies slightly
since the preconditioner is only applied locally on each mesh parti-
tion.
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Figure 1.  Information required beyond partition boundaries.

Node on the current partition

Level-1 ghost node

Level-2 ghost node

Partition
Boundary



3

The speedup obtained by parallelizing the flow and adjoint solv-
ers is demonstrated in Figs. 2 and 3. It can be seen that a nearly lin-
ear speedup is obtained. For this test, turbulent flow over the
ONERA M6 wing shown in Fig. 4 is computed. The mesh contains
359,536 nodes with a wall spacing of  of the mean aerody-
namic chord (MAC). The surface mesh consists of 9,129 nodes.

To verify that the linearizations performed in Refs. 1-4 have re-
mained consistent through the port to the parallel environment, sen-
sitivity derivatives obtained using the parallel solvers on eight pro-
cessors are compared with centered finite differences. Here,
turbulent flow over an ONERA M6 wing is computed using a
freestream Mach number of 0.3, an angle of attack of , and a
Reynolds number of  based on the MAC. The mesh used for
this case consists of 16,391 nodes. All results have been converged
to machine accuracy, and a step size of  has been used for
the finite-difference computations. For this case, the cost function
is a linear combination of lift and drag, and the design variables
generated using the software described in Ref. 24 are depicted in
Fig. 5. It can be seen from Table 1 that the derivatives are highly
consistent.

Adjoint Preconditioning Scheme
In Refs. 1-5, a preconditioned GMRES algorithm has been used

to solve Eq. 3. In these references, an incomplete LU-factorization
with no fill-in allowed [ILU(0)] is employed as the preconditioner.
The factorization is based on the first-order linearization of the re-
sidual, thereby avoiding excessive storage penalties associated with
the higher-order stencil for the inviscid fluxes. It has been shown in
Ref. 4 that the GMRES algorithm may stall and a converged adjoint
solution may be difficult to obtain using this preconditioner, partic-
ularly for viscous flows. This has been found to be the case for both
two- and three-dimensional problems.

Figure 2.  Parallel speedup obtained for the flow solver.

Figure 3.  Parallel speedup obtained for the adjoint solver.

Figure 4.  Surface mesh for viscous ONERA M6 wing.

Linear
Actual

Linear
Actual

Figure 5.  Location of design variables for ONERA M6 wing.

Table 1.  Sensitivity derivatives for turbulent flow over ONERA
M6 wing computed in parallel.

Design
Variable

Finite
Difference

Adjoint Percent Error

Camber #3 2.7762 2.7763 0.004%

Thickness #4 -0.03970 -0.03971 0.025%

Twist #4 0.00747 0.00747 0.000%

Shear #1 0.62023 0.62050 0.044%
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     #5
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In an effort to develop a more robust adjoint solver, an improved
ILU(0) preconditioning technique based on the complete lineariza-
tion of the residual is employed in the current work. As shown in
Ref. 25, the additional memory required for storing the complete
linearization is roughly four times that of the first-order matrix for
three-dimensional problems. This requirement can be somewhat al-
leviated by utilizing half-precision storage for these terms. As de-
scribed in Refs. 3 and 4, the linearizations required for the matrix-
vector products in the GMRES algorithm are stored for the nearest-
neighbor terms; these linearizations are also stored in half-precision
in the current work. Experiments have shown that this strategy
yields a total memory requirement of about 50% more than the pre-
vious version of the adjoint solver.

To demonstrate the improved performance using the higher-
order preconditioner, adjoint solutions are computed in parallel for
turbulent flow over the ONERA M6 wing shown in Fig. 4 using
eight processors. The freestream Mach number is , the angle
of attack is , and the Reynolds number is  based on the
MAC. For this case, 10 GMRES cycles are used with 10 search di-
rections and 5 restarts. Results for the first- and second-order pre-
conditioning strategies are shown in Fig. 6. It can be seen that the
solver based on the first-order preconditioner fails to converge the
solution, whereas the method employing the complete linearization
steadily reduces the residual by nearly five orders of magnitude.

Mesh Movement Strategy
As stated in Refs. 1-5, a combination of a distance function ap-

proach and a tension-spring analogy has previously been employed
as a means for modifying volume meshes as the geometric shape is
changed throughout the design process. It has been found that this
algorithm lacks the robustness necessary for the design environ-
ment, particularly for large surface deformations, meshes with
highly distorted cells, and essentially all three-dimensional geome-
tries. For this reason, a new approach based on modified linear elas-
ticity theory has been implemented.

In the approach taken in the current work, it is assumed that the
computational mesh obeys the isotropic linear elasticity relations
which take the following form in two dimensions:26

(7)

(8)

where  is Poisson’s ratio and the nodal displacement vector is
given by . Despite the assumption of an isotropic ma-

terial, a spatially-varying value of Poisson’s ratio is used in order to
maintain the physical integrity of highly skewed cells. This value
has been chosen based on heuristics and is set so that the coefficient

 is equal to the aspect ratio of the local cell. In this
manner, low aspect ratio cells mimic compressible materials such
as cork, while high aspect ratio cells tend to behave in an incom-
pressible fashion, much like rubber. Since the nodes on the surface
are constrained, the high aspect ratio cells in the near-wall region
are not susceptible to compression. A similar mesh movement
scheme has also been utilized in Ref. 27. Here, anisotropy in Pois-
son’s ratio is achieved by neglecting the Jacobian associated with
the transformation between physical and computational coordi-
nates. In this manner, Poisson’s ratio is implicitly determined by
the cell volumes, so that small cells deform less.

Figure 6.  Convergence of the adjoint solution for different
preconditioners.
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Figure 7.  Near-field view of baseline mesh.

Figure 8.  Near-field view of mesh after applying distance function/
tension-spring analogy.

Figure 9.  Near-field view of mesh after applying modified linear
elasticity method.
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To illustrate the advantage over the distance function/tension-
spring analogy, the flap on a multielement airfoil has been deflected

 and each of the mesh movement strategies has been applied.
Figure 7 shows a near-field view of the baseline mesh in the region
between the main element and flap. Figures 8 and 9 show the
meshes resulting from the distance function/tension-spring and
elasticity methods, respectively. It can be seen that the distance
function/tension-spring analogy allows gaps to form in the mesh,
whereas the elasticity approach pulls in nearby material to fill the
voids.

It has been found that the elasticity approach also allows for sig-
nificantly larger geometric deformations. In a similar test, the flap
of a multielement airfoil has been deflected from its baseline posi-
tion shown in Fig. 10. As can be seen from Figs. 11 and 12, the dis-
tance function/tension-spring approach has yielded an invalid

mesh, while the elasticity formulation has handled the deformation
in an acceptable manner. Similarly, when a series of flap transla-
tions and rotations is applied to the geometry shown in Fig. 13, the
meshes resulting from the elasticity technique maintain a high de-
gree of quality as shown in Fig. 14.

To further quantify the differences between the two mesh move-
ment schemes, derivatives of lift and drag due to horizontal transla-
tions of a main element and flap are examined. Ideally, the deriva-
tive due to a translation of the flap should be equal and opposite in
sign to a derivative due to an equal and opposite translation of the
main element. In practice however, this relationship is affected by
changes in the topology of the mesh due to the manner in which it
varies during a shape modification.5

To demonstrate this behavior, derivatives of lift and drag due to
equal and opposite horizontal translations of the main element and
flap on the two-element airfoil shown in Fig. 15 have been com-
puted for a turbulent flow. For this case, the freestream Mach num-

Figure 10.  Near-field view of mesh with flap in baseline position.

Figure 11.  Near-field view of mesh with flap rotated using the
distance function/tension-spring analogy.

Figure 12.  Near-field view of mesh with flap rotated using modified
linear elasticity method.

15°

Figure 13.  Mesh with flap in baseline position.

Figure 14.  Mesh with flap translated  and rotated
.

x∆ c⁄ 0.02=
15± °
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ber is 0.25, the Reynolds number is , and the angle of attack
is .

Table 2 shows the lift and drag derivatives due to translations of
the main element and flap using the distance function/tension-
spring analogy, and the last column is the sum of these two deriva-
tives which ideally would be zero. However, it can be seen from the
table that the derivatives are not at all equal in magnitude, and the
drag derivatives are not even of opposite sign. This inconsistency
would be expected to have an adverse effect on an optimization
procedure. Table 3 shows the same derivatives obtained using the
linear elasticity formulation. Although these derivatives do not sum
exactly to zero, they do exhibit opposite signs and are much closer
in magnitude. This tendency has been observed in several cases and
indicates that the linear elasticity formulation maintains the mesh
topology in a more consistent fashion.

Design Cases

Recovery of Experimental Flap Configuration
The first test case is a two-dimensional turbulent flow problem

for which a target pressure distribution is sought. An experimental
study of the multielement airfoil geometry shown in Fig. 16 has
been previously performed, and it can be seen from Fig. 17 that
computations using the baseline geometry are in disagreement with
the experimental results. The model used in the experiment had a
non-uniform gap and overlap across the span, and the flap deflected
at high dynamic pressures. The goal of the current work is to deter-
mine a new position of the flap using the pressure distribution ob-
tained in the experiment. The improved mesh movement capability
described above allows for the flap adjustment required by such a
problem.

The freestream Mach number is 0.7, the angle of attack is ,
and the Reynolds number is . For this case, the design vari-
ables are the rotation and x- and y-translations of the flap. After 5
design cycles, the flap has been rotated  and repositioned as
shown in Fig. 16, although very little change has occurred after the
first design cycle. It can be seen from Fig. 17 that the resulting
agreement with the experimental results is significantly improved.
Although not shown, an angle of attack sweep verifies that the new
position of the flap improves the agreement with the experiment
across the range of angles of attack.

Figure 15.  Geometry used for translation derivatives.

Table 2.  Derivatives of lift and drag due to flap and main element
translation using the distance function/tension-spring analogy.

Derivative

-1.4785 2.4033 0.9248

0.0183 0.0277 0.0460

Table 3.  Derivatives of lift and drag due to flap and main element
translation using linear elasticity.

Derivative

-3.8064 3.8671 0.0607

0.1722 -0.1615 0.0107

xmain xflap x∑
cl∂ x∂⁄

cd∂ x∂⁄

xmain xflap x∑
cl∂ x∂⁄

cd∂ x∂⁄

9 6×10
5°

1.5°
30 6×10

3.5°

Figure 16.  Baseline and modified geometries for multielement
airfoil problem.

Figure 17.  Pressure distributions for multielement airfoil problem.

Figure 18.  Density contours for the baseline geometry.

Baseline
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Baseline
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Turbulent Flow Over ONERA M6 Wing
A turbulent flow wing optimization is performed using the

ONERA M6 mesh previously shown in Fig. 4. The freestream
Mach number is 0.84, the angle of attack is , and the Rey-
nolds number is  based on the MAC. For these conditions,
the baseline geometry exhibits a swept shock extending from the
root leading edge and a strong normal shock further aft as shown in
Fig. 18. The objective for this example is to reduce drag while
maintaining a specified lift. The 20 shape design variables are
shown in Fig. 19, and the angle of attack is also allowed to vary.
The design case has been run using approximately 3 days of
wallclock time on 12 processors of an Origin 2000 system.

Cross-sections of the initial and final geometries can be seen in
Fig. 20. After 5 design cycles, the drag coefficient has been de-

creased by 15% from 0.0168 to 0.0142, while the lift coefficient has
maintained its baseline value of 0.253. Pressure distributions at sev-
eral locations across the span of the wing are shown in Fig. 21, and
density contours for the final geometry are shown in Fig. 22. It can
be seen that the normal shock has been weakened considerably,
particularly in the outboard section of the wing.

Turbulent Flow Over Multielement Wing
In order to handle an arbitrary number of three-dimensional ele-

ments parameterized by the package described in Ref. 24, software

Figure 19.  Location of design variables for ONERA M6 wing.

Figure 20.  Cross-sections of the initial and final wing geometries.

Twist

Twist

Twist

Twist

Camber
Camber and Thickness

Symmetry
Plane

3.06°
5 6×10

Figure 21.  Pressure distributions for the initial and final wing
geometries.

Figure 22.  Density contours for the final geometry.
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has been developed to combine multiple bodies which employ in-
dependent parameterizations. To evaluate this capability, the base-
line airfoil depicted in Fig. 16 is extruded in a spanwise direction to
create a  swept wing as shown in Fig. 23. The surface grid
shown contains 31,229 nodes and the volume mesh consists of
843,385 nodes and 4,796,360 tetrahedra. The adjoint solver re-
quires roughly 12 gigabytes of storage for the current example.

For this case, the main element and flap are parameterized sepa-
rately using camber values at the locations shown in Fig. 24. In ad-
dition to these shape parameters, the deflection as well as the verti-
cal and streamwise positioning of the flap are used as design
variables. The angle of attack is also allowed to vary, for a total of
34 design variables. The objective is to reduce the drag while main-
taining a specified lift. The freestream Mach number is 0.75, the
baseline angle of attack is , and the Reynolds number is 6.2 mil-
lion.

The design case has been run using 16 processors of an Origin
2000 system and required approximately 6 days of wallclock time.
After 5 design cycles, the drag coefficient has been reduced from
0.0399 to 0.0378, while the lift coefficient has maintained its origi-
nal value of 0.437. Cross-sections of the baseline and modified ge-
ometries can be seen in Fig. 25, while pressure distributions are
shown in Fig. 26. The flap has been repositioned and can be seen to
carry a reduced loading, which has been compensated by an in-
crease in camber across the main element.

Figure 23.  Surface mesh for multielement wing.

Figure 24.  Location of design variables for multielement wing.

Camber

Symmetry
Plane

5°

1°

Figure 25.  Cross-sections of the initial and final wing geometries.

Figure 26.  Pressure distributions for the initial and final wing
geometries.
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Summary
An unstructured mesh design methodology based on a discrete

adjoint formulation has been extended to a multiprocessing envi-
ronment using domain decomposition and a shared memory ap-
proach. The parallel implementation has been shown to scale well
while yielding discretely consistent sensitivity information.

A preconditioning scheme based on the complete linearization of
the residual has been demonstrated for adjoint computations. Al-
though the new strategy requires an increased amount of memory
due to the larger stencil, it has been found to give superior conver-
gence rates and hence better reliability.

An improved mesh movement capability has been developed
using an approach based on linear elasticity relations. In the current
work, the scheme is modified to use a spatially-varying value of
Poisson’s ratio to account for highly skewed cells. The new proce-
dure yields a robust technique which maintains the mesh topology
in a more consistent fashion than a previous distance function/ten-
sion-spring analogy.

Several design examples have been presented which demonstrate
the improved capability of the current implementation. Reduced
turnaround time combined with an increased level of robustness has
enabled previously impractical problems to be addressed.
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